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Abstract

The Richtmyer-Meshkov instability occurs when a perd

interface between fluids of different densities imspulsively

accelerated, typically by a shock wave. It is intgot in a

number of applications including inertial confinamefusion,

astrophysical phenomena and fuel-air mixing in sgess. When
the materials involved are in the plasma statha# been shown
that the instability can be suppressed by a magfietd normal

to the interface. The linearized case where thgnmigc field is

parallel to the interface has also been modelledytaally, but

utilising a non-equilibrium initial condition. Herwe present an
alternative model based on solving the linearizembinpressible
initial value problem with an equilibrium initialoadition. This

results in a simpler model for the interface bebawithat

illustrates the effect of the impulsive accelenatamly. The flow

predicted by the incompressible model is compaoetthé results
of two-dimensional, impulsively accelerated, consgikle

magnetohydrodynamic (MHD) simulations, which was done

previously for the parallel field case. The insk@piis found to

also be suppressed in the parallel field case. vinex sheet
that is present on the interface immediately after impulse

breaks up into waves travelling parallel and aatiafiel to the

magnetic field, which transport the vorticity. Theterference of
these waves, as they propagate, causes the pé&daramplitude

of the interface to oscillate in time. This insgé& behaviour is
accurately predicted by the linear model for thenditions

investigated.

Introduction

When a shock wave interacts with a perturbed iaterf
separating fluids with different densities, theenfilce becomes
unstable and the perturbations grow. This scenasas first
considered by Markstein [1]. rigorous theoreticahd
numerical analysis of the flow was later presertgdRichtmyer
[2], whose predictions were confirmed by the shddbe
experiments of Meshkov [3]. This instability is tafore known
as the Richtmyer-Meshkov instability (RMI). The caital
situation in which the RMI occurs is shown in Figd(@), where
a shock wave interacts with a sinusoidal denstigrface. Figure
1(b) shows the effect of the instability on theenfihce after the
interaction is complete: it has become highly dist which can
lead to significant mixing between the two fluids.

The RMI is important in a wide variety of applicato One of
the most significant of these is inertial confinemtusion (ICF),
which has been a major impetus for the study ofclsho
accelerated interfaces [4]. In current ICF expentsge rapid
ablation of a spherical capsule of Beryllium-Coppléayadrives
an implosion into the deuterium-tritium fuel comtadl within [5].
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Figure 1. (a) Physical setup for the RMI simulasiasf Wheatleyet al.
[14]. Results shown are for an incident shock sdviach numberof
M=2, an initial magnetic field of non-dimensionalrestgth f~1 =
B?/2p, = 1/16, wherepy is the initial pressure, and a density rati
p2/p1=1/3. (b) Post-interaction density (left half franamd vorticity (v,
right half plane) fields when no magnetic field psesent. (c) Post-
interaction densitand vorticityfields when a magneticeldis preser.

The RMI promotes mixing between the capsule matenal the
fuel. This mixing limits the final compression tife fuel and
hence the possibility of achieving energy breakrever
production [6]. The RMI is also important in astngpical
phenomena. It has been used to account for the tdck
stratification in the products of supernova 1987l & required
in stellar evolution models [7]. Other applicasoaf the RMI
include mixing enhancement in hypersonic air briegtlengines
[8], shock-flame interactions [9] and reflected cktunnels [10].

In the first two applications of the RMI listed algovinertial
confinement fusion and astrophysical phenomena,nibdium
involved may be in the plasma state and hence feetadl by
magnetic fields. The effect of a magnetic field toe RMI had
not been investigated until Samtaney [11] demotedravia
numerical simulations, that for the magnetic figldentation
shown in Figure 1(a) the growth of the RMI is supggea. This
can clearly be seen by comparing Figure 1(b), wisicbws the
post-interaction density contours when no magnéigtd is
present, and Figure 1(c), which shows the resulirofdentical
simulation carried out in the presence of a magrelid. It was
shown by Wheatleyet al. [12] that the suppression of the
instability is caused by changes in the shock céfya process at
the interface with the application of a magnet&dithat leave
the interface vorticity free. Subsequently, Wheatte al. [13]
carried out an analytical linear analysis of an ufsjvely
accelerated density interface in the presence ohoemal



magnetic field. This successfully models the betaviof the
interface in the MHD RMI for weak shocks and magnétlds
[14]. The other canonical MHD RMI case, where thagnetic
field is parallel to the density interface, washinly modelled by
Caoet al. [15]. However, their solution technique, whiclifetis
from that used in Wheatlegy al. [13], results in oscillation of the
interface even when no forcing is present. In é&oldit their
model has not been compared to other results tesssis
accuracy.

In the present work, we formulate a linear incorspitele model
for the MHD RMI when the magnetic field is parallelthe mean
interface location, as shown in figure 2. The applo of
Wheatleyet al. [13] is used so that interface motion occurs only
as a result of the impulsive acceleration and met t the initial
condition. The behaviour predicted by this model tien
compared to the results of impulse driven simutetiof the full
nonlinear compressible ideal MHD equations. Thisved both
the appropriateness and accuracy of the model tovestigated
and reveals new details of the flow physics.

Incompressible Model

The geometry of the problem under consideratioshiswn in
figure 2 (a): A shock wave of sonic Mach numibérimpacts a
sinusoidally perturbed density interface in thespree of a
transverse magnetic field. The corresponding incompressible
model problem is shown in figure 2 (b). The shockederation is
replaced by an impulsive acceleration in thairection, V§(t),
where §(t) is the Dirac delta function in time alWdk c, the
speed of light. This accelerates uniform quiesamriducting
fluids of densitiesp; and p,, respectively, separated by an
interface with initial perturbation amplitudg and wavelengtii.
The initial magnetic field,B, = B&é,, is aligned with the mean
interface location in thec-direction and has non-dimensional
strength B~ = B?/(2p,), where p, is the uniform initial
pressure.
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Figure 2. (a) Initial condition for compressible NMHRMI with
transverse field. (b) Initial condition and georgyefor correspondir
incompressible model problem.

We seek solutions to this problem that satisfy linearized
equations of ideal, incompressible MHD. It is comeat to
consider the situation where the fluid is restrdirs® that the
impulsive body forceoVé§(t) does not result in bulk motion of
the fluid. The base-flow about which the equatiares linearized
results from subjecting uniform fluids separated lan
unperturbed interface at= 0 to the impulsive body force. The
base-flow is independent aof and has zero horizontal velocity
(u). An impulsive hydrostatic pressure distributioaldnces the
body force resulting in the vertical velocity) also being zero.
The complete base-flow is denoted with a subsd@imnd is
given by

po(2) = p1 + H(2)(pz — p1),
u0=0, W0=0, Bx(]:B, Bzo=0,
po(z,t) = —p,VE(t)z — H(z)(p, — p1)VE(t)z,

whereH((z) is the Heaviside functiom, is densityp is pressure,
u is velocity, andB is the magnetic field. The linearized
equations for the perturbations to the base-floavabtained by
setting the density equal to

p(x,z,t) = py + H[z — h(x,t)](pz — p1),

where the interface locatidr(x, t) « A, and by assuming that all
other flow quantities have the formy(x,z,t) = qy(2) +
q'(x,z,t), whereq' are small perturbations to the base-flow.
Substituting these expressions into the incompEssMHD

equations and neglecting terms involving product§ o
perturbations yields

our awr

i, =0 (1)
poi+ =0, @
P2+ 2 = (p, — p)[H(2) — H(z — WIVS(®) - B (22— 22), (3)
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The forcing of the perturbations due to the impuse = 0% is
non-zero only in the vanishingly small regiare [0, h(x, t)].
Our approach is to account for the forcing in thatehing
conditions between homogeneous solutions that alid above
and below this region. To obtain the homogenouistisns, we
assume that all perturbations have the fogi{x,z,t) =
4(z,t)e™** then take the temporal Laplace transforms of $))-(
outside of the forced region. Initial conditions aaken at =
0~, when there are no perturbations to the veloditynagnetic
field. The transformed equations can then be coetbio give a
single differential equation for the transformedtioal velocity
magnitude in each fluid,

D2Wj; — k2W; = 0, ©)

whereW is the temporal Laplace transformi®fj = 1 or 2,sis
the Laplace variable a2l = d/dz. Equations (6) has the general
solution

W; = A;(s)e* + B;(s)e™*2. @)

This is relatively simpler than the general solntfor the normal
field case, which had additional terms correspogdiinwave-like
modes of the fornti (t + z,/p;/B,)f (t  z,[p;/B,) [13]. These
modes were responsible for transporting the vaytigenerated
by impulse away from the interface, which suppréstegrowth
[14]. Thus the mechanism by which the RMI was sugged in
the normal field case is absent here.

As the perturbations must be bounded|as— o, assuming
k>0, A,(s) = 0 andB;(s) = 0. Thus the transformed velocity
magnitudes in each fluid are

Wi(z,5) = A(s)e"?, Wy(z,5) = By(s)e™. ®)

These homogeneous solutions are subject to matcleimgjtions

at the contact z= h(x,t) = n(t)e?*). Only two matching

conditions are required to determine the solutionthis case.
The first is the kinematic condition that must be continuous.
To leading order ik, this is equivalent to

[Wlz=0 = 0 = Ai(s) = By(s) = A(s), ©)

where[q],-0 = q21z=0 — ¢1]z=0 @nd (8) was used to obtain the
expression on the right.

The second matching condition, which accounts lier forcing,
is derived by integrating (3) iz across the inhomogeneous



region, from O tah(x, t). After using the fact that + %B ‘B is

continuous across the contact, expanding quanttietuated at
z=h as Taylor series about= 0, and neglecting products of
perturbations and higher order termdjrthis integration yields

pé(x' 0, t) - Pi(X, 0, t) + B[B;cZ (x' 0, t) - BJ’Cl(x' 0, t)]

= (p2 — pIVE(ON()e™™.  (10)
Equations (1)-(5) can be used to expresandB,; in terms of

w;. Using these expressions, taking the Laplace fisemsof (10)
and using (8) gives

[(p1 + Pz)% + ZkS_BZ]A(S) = (p2 — p)V1o. (11)

The final solutions for the vertical velocity pethations are
obtained by solving for (10) fok(s), taking the inverse Laplace
transform, then substituting the result in the assiforms of the
perturbations. This gives

wi (x,z,t) = kVnoA cos(wt) H(t)ek ek, (12)
wi(x,2,t) = kVnoA cos(wt) H(t)e *2eikx, (13)
where
w=—2K = k =Ph

V(p1+p2)/2 J%(C;fﬂ;zz)’ p2+py

Here, A is the Atwood ratio andy; = B/\/p_]- is the Alfvén

speed. This solution shows that while the initia=(0") growth
rate of the interface,

M = wr(0,0,0%) = okVeA, (14)
otly=g "/

is identical to the hydrodynamic case [2], the preg of the
magnetic field prevents linear growth at this ratestead, the
amplitude of the interface oscillates in time dtemuencyw, as
described by

n(t) = foi w;(0,0,7)dr = 19 (1 + kVTﬂsin(wt)). (15)

For one set of parameters, the resulting denstyg fitt = 0.27w

is shown in figure 3 along with the magnetic fiéhes. It can be
seen that the motion of the interface has pertuthednagnetic
field lines, which creates a restoring force duentagnetic field
line tension. This causes the fluids to oscillétaet we will see
that it does not completely describe the flow pbysround the

Figure 3.Density field and magnetic field lines from the anepressibl
linear MHD RMI model at = 0.27/@w. Results shown are for the ¢
withg =1,V = 2,9, = 1/20 andp,/p, = 3.

interface.

One aspect of the solution that requires furthgestigation is
the nature of the interface. The unperturbed iaterfhas no
magnetic field lines crossing it and is what is wWnoas a
tangential discontinuity. Only the normal velocityandp + B -

B/2 are required to be continuous across a tangential

discontinuity (see e.g. [16]), and this is all wevé assumed in
our solution. If the field lines cross the intedga however, as is
seen to occur in figure 2, two additional jump dtinods must be

satisfied. These are the continuity of tangenti@locity and
magnetic field. From our solution, we find the juimptangential
velocity across the interface is non-zero andvsmgiby

[ul,=0 = 2VnyA cos(wt) H(t)sin(kx). (16)

This implies that the inhomogeneous region betwten two

fluids, which we integrated across in our solutiolyst contain
more structure than a simple MHD contact discoriynu
Additional structures must be present in this matghegion to

carry the shear. To investigate the nature of tisesetures, and
determine if our model that integrates across ttemturately
predicts the motion of the interface, we turn tondliaear

compressible simulations.

Simulation Methodology

The non-linear simulations were carried out usirpm@pressible
ideal MHD code similar to that used in Samtaney, ITL It uses
an eight-wave upwinding formulation within an urispl
upwinding method [18,17]. The solenoidal property tbe
magnetic field is enforced at each time step usingrojection
method [17].

Both impulse-driven and shock-driven simulations ehdeen
carried out. The geometry for these simulationasisshown in
figure 2. Periodic boundary conditions are usethéx-direction
and zero gradient boundary conditions are useleg-tlirection.
A uniform grid spacing ofi/256 is used for all simulations.

For the shock-driven simulation, the initial deresitbelow and
above the interface apg = 1 andp, = 1.25, respectively. The
shock has a sonic Mach numbr = 1.25 and the pressure
upstream of the shock ig, = 1. The initial perturbation
amplitude of the interface ig,/1 = 0.05 and the uniform
horizontal magnetic field upstream of the shockharacterized
by B = 8. The shock-interaction process compresses thasfhoi
higher densities and pressure, slightly increases rhagnetic
field strength and compresses the interface peatiomn. Post-
shock-compression values are used to initialize ithpulse-
driven simulation. These amg = 1.26, p, = 1.57, p, = 1.47,
B,o = 0.628 andn, = 0.0395A. The magnitude of the impulse is
set to the velocity imparted to the interface ie ghock driven
problem; V = 0.296. In the impulse-driven simulation, the
forcing on the right-hand-side of (3) is imposediaource term.

Results and Discussion

The evolution of vorticity in the vicinity of thenierface from the
impulse-driven simulation is shown in figure 4. Tpiets have
been rotated by 90to allow the evolution to be displayed
compactly. The vorticity distribution immediatelyfter the
impulse is coincident with the contact discontipuénd is
identical to that in hydrodynamic (zero magneteld) case, as
predicted by the linear model. If the vorticity raimed on the
contact, as at = O, it would cause the perturbation of the
interface to grow and eventually for roll-up to occ This
situation cannot persist, however, as the MHD Rakingoniot
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Figure 4. Evolution of vorticity in the vicinity ofhe interface forar
impulse-driven MHD RMI simulation withp, = 1.26, p, = 1.57,
Po = 1.47, (Byo, Byo) = (0.628,0), o = 0.0395X andV = 0.296. T is
the model period®2w Red (blue) indicates positive (negative) voryicit



relations prohibit steady shear across a contastodtinuity

when magnetic field lines cross the discontinultystead, we
find that the initial distribution breaks up intevd vorticity-

carrying waves that propagate parallel and antdfmrto the

magnetic field at the relevant Alfén speed. In fegd, it can be
seen that the structure of these waves remainsangel as they
interact with each other. At = T/2, whereT = 2r/w is the

theoretical period from the linear model, the wasesstructively
interfere to form a vorticity distribution 18®ut-of-phase with
the original. This will reverse the growth of thaetdrface

perturbation caused by the vorticity distributionta 0°. The

periodic constructive interference of the waves tiooes

indefinitely and causes the interface to osciliatéime. Similar

waves were observed to occur in the shock driver.ca

We have now established that waves do exist invitiaity of
the interface to support shear across the matatggipn while
allowing the contact discontinuity to satisfy thelewant jump
conditions. What remains to be investigated is taetour
model, which integrates across this region, caunrately predict
the behaviour of the interface. This is assessédigjume 5, which
shows the interface amplitude histories from thmmpressible
model and both shock-driven and impulse-driven aasgible
simulations. It can be seen that the model acdyrptedicts both
the oscillatory nature and frequency of the intefanotion. The
amplitude of the oscillations in the impulse drivémulation is
almost perfectly predicted for the first half-petjobut is
somewhat under-predicted thereafter. The amplitodethe
oscillations in the shock-driven simulation is sieathan in the
corresponding impulse-driven simulation and is sehs over-
predicted by the model. We note that the interfasmllations in
the shock-driven simulation deviate from sinusoiokhaviour in
that the rate of decay of the perturbation ampétiggreater than
the rate of growth.
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Figure 5.Interface amplitude histories from the linear inguassibl
MHD RMI model and noriinear simulations for the case correspon
to a shock-driven flow withp; =1, p, =125 M = 1.25,p, =1,
no/2A = 0.05 and a uniform horizontal magnetic field upstreast the
shock characterized /= 8.

Conclusions

We find that the MHD Richtmyer-Meshkov instabilitys i
suppressed in the transverse field case. Thexslteet present
on the interface immediately after the impulse kseap into
waves travelling parallel and anti-parallel to thagnetic field,
which transport the vorticity. The interferencetbése waves as
they propagate causes the perturbation amplitudieeointerface
to oscillate in time. This interface behaviour ascurately
predicted by the incompressible linear model westdeveloped.
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