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Abstract 

The Richtmyer-Meshkov instability occurs when a perturbed 
interface between fluids of different densities is impulsively 
accelerated, typically by a shock wave. It is important in a 
number of applications including inertial confinement fusion, 
astrophysical phenomena and fuel-air mixing in scramjets.  When 
the materials involved are in the plasma state, it has been shown 
that the instability can be suppressed by a magnetic field normal 
to the interface.  The linearized case where the magnetic field is 
parallel to the interface has also been modelled analytically, but 
utilising a non-equilibrium initial condition.  Here, we present an 
alternative model based on solving the linearized incompressible 
initial value problem with an equilibrium initial condition.  This 
results in a simpler model for the interface behaviour that 
illustrates the effect of the impulsive acceleration only.  The flow 
predicted by the incompressible model is compared to the results 
of two-dimensional, impulsively accelerated, compressible 
magnetohydrodynamic (MHD) simulations, which was not done 
previously for the parallel field case. The instability is found to 
also be suppressed in the parallel field case.  The vortex sheet 
that is present on the interface immediately after the impulse 
breaks up into waves travelling parallel and anti-parallel to the 
magnetic field, which transport the vorticity. The interference of 
these waves, as they propagate, causes the perturbation amplitude 
of the interface to oscillate in time.  This interface behaviour is 
accurately predicted by the linear model for the conditions 
investigated.   

Introduction  

When a shock wave interacts with a perturbed interface 
separating fluids with different densities, the interface becomes 
unstable and the perturbations grow. This scenario was first 
considered by Markstein [1]. A rigorous theoretical and 
numerical analysis of the flow was later presented by Richtmyer 
[2], whose predictions were confirmed by the shock tube 
experiments of Meshkov [3]. This instability is therefore known 
as the Richtmyer-Meshkov instability (RMI).  The canonical 
situation in which the RMI occurs is shown in Figure 1(a), where 
a shock wave interacts with a sinusoidal density interface. Figure 
1(b) shows the effect of the instability on the interface after the 
interaction is complete: it has become highly distorted which can 
lead to significant mixing between the two fluids. 

The RMI is important in a wide variety of applications.  One of 
the most significant of these is inertial confinement fusion (ICF), 
which has been a major impetus for the study of shock 
accelerated interfaces [4]. In current ICF experiments, rapid 
ablation of a spherical capsule of Beryllium-Copper alloy drives 
an implosion into the deuterium-tritium fuel contained within [5]. 

The RMI promotes mixing between the capsule material and the 
fuel.  This mixing limits the final compression of the fuel and 
hence the possibility of achieving energy break-even or 
production [6].  The RMI is also important in astrophysical 
phenomena. It has been used to account for the lack of 
stratification in the products of supernova 1987A and is required 
in stellar evolution models [7].  Other applications of the RMI 
include mixing enhancement in hypersonic air breathing engines 
[8], shock-flame interactions [9] and reflected shock-tunnels [10]. 

In the first two applications of the RMI listed above, inertial 
confinement fusion and astrophysical phenomena, the medium 
involved may be in the plasma state and hence be affected by 
magnetic fields. The effect of a magnetic field on the RMI had 
not been investigated until Samtaney [11] demonstrated, via 
numerical simulations, that for the magnetic field orientation 
shown in Figure 1(a) the growth of the RMI is suppressed. This 
can clearly be seen by comparing Figure 1(b), which shows the 
post-interaction density contours when no magnetic field is 
present, and Figure 1(c), which shows the result of an identical 
simulation carried out in the presence of a magnetic field. It was 
shown by Wheatley et al. [12] that the suppression of the 
instability is caused by changes in the shock refraction process at 
the interface with the application of a magnetic field that leave 
the interface vorticity free. Subsequently, Wheatley et al. [13] 
carried out an analytical linear analysis of an impulsively 
accelerated density interface in the presence of a normal 

 
Figure 1. (a) Physical setup for the RMI simulations of Wheatley et al. 
[14].  Results shown are for an incident shock sonic Mach number of 
M=2, an initial magnetic field of non-dimensional strength ��� �
��/2	
 � 1/16, where p0 is the initial pressure, and a density ratio of 

�/
�=1/3. (b) Post-interaction density (left half frame) and vorticity (ω, 
right half plane) fields when no magnetic field is present.  (c) Post-
interaction density and vorticity fields when a magnetic field is present. 



magnetic field. This successfully models the behaviour of the 
interface in the MHD RMI for weak shocks and magnetic fields 
[14].  The other canonical MHD RMI case, where the magnetic 
field is parallel to the density interface, was linearly modelled by 
Cao et al. [15]. However, their solution technique, which differs 
from that used in Wheatley et al. [13], results in oscillation of the 
interface even when no forcing is present. In addition, their 
model has not been compared to other results to assess its 
accuracy.   

In the present work, we formulate a linear incompressible model 
for the MHD RMI when the magnetic field is parallel to the mean 
interface location, as shown in figure 2. The approach of 
Wheatley et al. [13] is used so that interface motion occurs only 
as a result of the impulsive acceleration and not due to the initial 
condition. The behaviour predicted by this model is then 
compared to the results of impulse driven simulations of the full 
nonlinear compressible ideal MHD equations. This allows both 
the appropriateness and accuracy of the model to be investigated 
and reveals new details of the flow physics. 

Incompressible Model 

The geometry of the problem under consideration is shown in 
figure 2 (a): A shock wave of sonic Mach number M impacts a 
sinusoidally perturbed density interface in the presence of a 
transverse magnetic field, B. The corresponding incompressible 
model problem is shown in figure 2 (b). The shock acceleration is 
replaced by an impulsive acceleration in the z-direction, �����, 
where ���� is the Dirac delta function in time and	� ≪ �, the 
speed of light. This accelerates uniform quiescent conducting 
fluids of densities 
� and 
�, respectively, separated by an 
interface with initial perturbation amplitude �
 and wavelength �. 
The initial magnetic field, 	�
 � ����, is aligned with the mean 
interface location in the x-direction and has non-dimensional 
strength ��� � ��/�2	
�, where 	
 is the uniform initial 
pressure. 

We seek solutions to this problem that satisfy the linearized 
equations of ideal, incompressible MHD. It is convenient to 
consider the situation where the fluid is restrained so that the 
impulsive body force 
����� does not result in bulk motion of 
the fluid. The base-flow about which the equations are linearized 
results from subjecting uniform fluids separated by an 
unperturbed interface at � � 0 to the impulsive body force. The 
base-flow is independent of � and has zero horizontal velocity 
(�). An impulsive hydrostatic pressure distribution balances the 
body force resulting in the vertical velocity ( ) also being zero. 
The complete base-flow is denoted with a subscript 0 and is 
given by 
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where "��� is the Heaviside function, 
 is density, 	 is pressure, 
& is velocity, and � is the magnetic field. The linearized 
equations for the perturbations to the base-flow are obtained by 
setting the density equal to 
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where the interface location )��, �� ≪ �, and by assuming that all 
other flow quantities have the form +��, �, �� � +
��� !
+′��, �, ��, where +′ are small perturbations to the base-flow. 
Substituting these expressions into the incompressible MHD 
equations and neglecting terms involving products of 
perturbations yields  
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The forcing of the perturbations due to the impulse at � � 09 is 
non-zero only in the vanishingly small region � ∈ (0, )��, ��*. 
Our approach is to account for the forcing in the matching 
conditions between homogeneous solutions that are valid above 
and below this region.  To obtain the homogenous solutions, we 
assume that all perturbations have the form +′��, �, �� �
+���, ��;<=� then take the temporal Laplace transforms of (1)-(5) 
outside of the forced region. Initial conditions are taken at � �
0�, when there are no perturbations to the velocity or magnetic 
field. The transformed equations can then be combined to give a 
single differential equation for the transformed vertical velocity 
magnitude in each fluid, 

>�?@ # A�?@ � 0,         (6) 

where ? is the temporal Laplace transform of  B , C � 1 or 2, s is 
the Laplace variable and > ≡ d/d�. Equations (6) has the general 
solution  

?@ � F@�s�;=% ! �@�s�;�=%.       (7) 

This is relatively simpler than the general solution for the normal 
field case, which had additional terms corresponding to wave-like 
modes of the form "�� H �I
@/�J�K�� H �I
@/�J� [13]. These 
modes were responsible for transporting the vorticity generated 
by impulse away from the interface, which suppressed its growth 
[14]. Thus the mechanism by which the RMI was suppressed in 
the normal field case is absent here.   

As the perturbations must be bounded as |�| → ∞, assuming 
A O 0, F��P� � 0 and ���P� � 0. Thus the transformed velocity 
magnitudes in each fluid are  

?���, P� � F��P�;=%,			?���, P� � ���P�;�=%.    (8) 

These homogeneous solutions are subject to matching conditions 
at the contact (� � )��, �� � ����;<=�). Only two matching 
conditions are required to determine the solution in this case.  
The first is the kinematic condition that  ′ must be continuous. 
To leading order in ), this is equivalent to  

(?*%Q
 � 0 → F��s� � ���P� ≡ F�P�,     (9) 

where (+*%Q
 ≡ +�|%Q
 # +�|%Q
 and (8) was used to obtain the 
expression on the right. 

The second matching condition, which accounts for the forcing, 
is derived by integrating (3) in z across the inhomogeneous 

 
Figure 2. (a) Initial condition for compressible MHD RMI with 
transverse field. (b) Initial condition and geometry for corresponding 
incompressible model problem. 



region, from 0 to )��, �). After using the fact that 	 + �
�R ∙ R is 

continuous across the contact, expanding quantities evaluated at 
z = h as Taylor series about z = 0, and neglecting products of 
perturbations and higher order terms in h, this integration yields 

 	�/ (�, 0, �) − 	�/(�, 0, �) + �(���/ (�, 0, �) − ���/ (�, 0, �)* 
= (
� − 
�)��(�)�(�);<=�.  (10) 

Equations (1)-(5) can be used to express 	@/ and ��@/  in terms of 
 @/. Using these expressions, taking the Laplace transform of (10) 
and using (8) gives  

((
� + 
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T *F(P) = (
� − 
�)��
.    (11) 

The final solutions for the vertical velocity perturbations are 
obtained by solving for (10) for A(s), taking the inverse Laplace 
transform, then substituting the result in the assumed forms of the 
perturbations.  This gives  

 �/(�, �, �) = A��
V cos(Y�) H(�)e=%;<=�,    (12) 

 �/(�, �, �) = A��
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where  
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Here, V is the Atwood ratio and �d@ = � I
@⁄  is the Alfvén 
speed. This solution shows that while the initial (� = 09) growth 
rate of the interface, 

-f
-1 g1Q
 =  @/(0,0,09) = �
A�V,       (14) 

is identical to the hydrodynamic case [2], the presence of the 
magnetic field prevents linear growth at this rate.  Instead, the 
amplitude of the interface oscillates in time at a frequency ω, as 
described by 

�(�) = h  @/(0,0, i)ji1

k = 	�
 31 + =lV

m sin(Y�)7.   (15) 

For one set of parameters, the resulting density field at t = 0.2π/ω 
is shown in figure 3 along with the magnetic field lines. It can be 
seen that the motion of the interface has perturbed the magnetic 
field lines, which creates a restoring force due to magnetic field 
line tension. This causes the fluids to oscillate, but we will see 
that it does not completely describe the flow physics around the 

interface. 

One aspect of the solution that requires further investigation is 
the nature of the interface. The unperturbed interface has no 
magnetic field lines crossing it and is what is known as a 
tangential discontinuity. Only the normal velocity w and 	 + R ∙
R/2 are required to be continuous across a tangential 
discontinuity (see e.g. [16]), and this is all we have assumed in 
our solution.  If the field lines cross the interface, however, as is 
seen to occur in figure 2, two additional jump conditions must be 

satisfied.  These are the continuity of tangential velocity and 
magnetic field. From our solution, we find the jump in tangential 
velocity across the interface is non-zero and is given by 

(�*%Q
 = 	2��
V cos(Y�) H(�)sin	(A�).     (16) 

This implies that the inhomogeneous region between the two 
fluids, which we integrated across in our solution, must contain 
more structure than a simple MHD contact discontinuity.  
Additional structures must be present in this matching region to 
carry the shear. To investigate the nature of these structures, and 
determine if our model that integrates across them accurately 
predicts the motion of the interface, we turn to non-linear 
compressible simulations. 

Simulation Methodology 

The non-linear simulations were carried out using a compressible 
ideal MHD code similar to that used in Samtaney [11,17]. It uses 
an eight-wave upwinding formulation within an unsplit 
upwinding method [18,17]. The solenoidal property of the 
magnetic field is enforced at each time step using a projection 
method [17].  

Both impulse-driven and shock-driven simulations have been 
carried out.  The geometry for these simulations is as shown in 
figure 2.  Periodic boundary conditions are used in the x-direction 
and zero gradient boundary conditions are used in the z-direction.  
A uniform grid spacing of λ/256 is used for all simulations. 

For the shock-driven simulation, the initial densities below and 
above the interface are 
� = 1 and 
� = 1.25, respectively. The 
shock has a sonic Mach number M = 1.25 and the pressure 
upstream of the shock is 	
 = 1.  The initial perturbation 
amplitude of the interface is �
/� = 0.05 and the uniform 
horizontal magnetic field upstream of the shock is characterized 
by � = 8. The shock-interaction process compresses the fluids to 
higher densities and pressure, slightly increases the magnetic 
field strength and compresses the interface perturbation.  Post-
shock-compression values are used to initialize the impulse-
driven simulation. These are 
� = 1.26, 
� = 1.57, 	
 = 1.47, 
��
 = 0.628 and �
 = 0.0395λ. The magnitude of the impulse is 
set to the velocity imparted to the interface in the shock driven 
problem; � = 0.296. In the impulse-driven simulation, the 
forcing on the right-hand-side of (3) is imposed as a source term. 

Results and Discussion 

The evolution of vorticity in the vicinity of the interface from the 
impulse-driven simulation is shown in figure 4. The plots have 
been rotated by 90° to allow the evolution to be displayed 
compactly. The vorticity distribution immediately after the 
impulse is coincident with the contact discontinuity and is 
identical to that in hydrodynamic (zero magnetic field) case, as 
predicted by the linear model. If the vorticity remained on the 
contact, as at t = 0+, it would cause the perturbation of the 
interface to grow and eventually for roll-up to occur. This 
situation cannot persist, however, as the MHD Rankine-Hugoniot 

 
Figure 3. Density field and magnetic field lines from the incompressible 
linear MHD RMI model at t = 0.2π/ω. Results shown are for the case 
with � = 1, � = 2, �
 = �/20 and 
� 
�⁄ = 3. 

Figure 4. Evolution of vorticity in the vicinity of the interface for an 
impulse-driven MHD RMI simulation with 
� = 1.26, 
� = 1.57, 
	
 = 1.47, (��
, �%
) = (0.628, 0), �
 = 0.0395λ and � = 0.296. T is 
the model period 2π/ω. Red (blue) indicates positive (negative) vorticity. 



relations prohibit steady shear across a contact discontinuity 
when magnetic field lines cross the discontinuity. Instead, we 
find that the initial distribution breaks up into two vorticity-
carrying waves that propagate parallel and anti-parallel to the 
magnetic field at the relevant Alfén speed. In figure 4, it can be 
seen that the structure of these waves remains unchanged as they 
interact with each other.  At t = T/2, where T = 2π/ω is the 
theoretical period from the linear model, the waves constructively 
interfere to form a vorticity distribution 180° out-of-phase with 
the original. This will reverse the growth of the interface 
perturbation caused by the vorticity distribution at t = 0+.  The 
periodic constructive interference of the waves continues 
indefinitely and causes the interface to oscillate in time. Similar 
waves were observed to occur in the shock driven case. 

We have now established that waves do exist in the vicinity of 
the interface to support shear across the matching region while 
allowing the contact discontinuity to satisfy the relevant jump 
conditions. What remains to be investigated is whether our 
model, which integrates across this region, can accurately predict 
the behaviour of the interface. This is assessed in figure 5, which 
shows the interface amplitude histories from the incompressible 
model and both shock-driven and impulse-driven compressible 
simulations. It can be seen that the model accurately predicts both 
the oscillatory nature and frequency of the interface motion.  The 
amplitude of the oscillations in the impulse driven simulation is 
almost perfectly predicted for the first half-period, but is 
somewhat under-predicted thereafter. The amplitude of the 
oscillations in the shock-driven simulation is smaller than in the 
corresponding impulse-driven simulation and is somewhat over-
predicted by the model.  We note that the interface oscillations in 
the shock-driven simulation deviate from sinusoidal behaviour in 
that the rate of decay of the perturbation amplitude is greater than 
the rate of growth. 

Conclusions 

We find that the MHD Richtmyer-Meshkov instability is 
suppressed in the transverse field case.  The vortex sheet present 
on the interface immediately after the impulse breaks up into 
waves travelling parallel and anti-parallel to the magnetic field, 
which transport the vorticity. The interference of these waves as 
they propagate causes the perturbation amplitude of the interface 
to oscillate in time.  This interface behaviour is accurately 
predicted by the incompressible linear model we have developed. 
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